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Atmospheric Radiative Transfer : UMBC models

Monochromatic and Fast Models
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Overview

• Clear sky radiative transfer

• Fast Models

• Particle scattering

• Cloudy sky radiative transfer

• Non Local Thermodynamic Equilibrium
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Brightness Temperature vs Wavenumber
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Radiative Transfer

• At steady state, the 1D Schwartzchild Equation says

µ
dI(ν, θ)

kedz
= −I(ν, θ) + J(ν)

• µ = cos(θ), dz is the vertical coordinate

• ke is the total extinction (due to gases, clouds etc)

• kedz = ds is the optical depth

• I(ν, θ) is the radiance intensity

• J is the source function

• If J = 0, then simple solution shows attenuation as beam propagates

I(ν, θ)(z) = I0(ν, θ)e−(kez/µ)
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Source function J

• Clear Sky, in LTE : J = B(ν, T )

• Clear Sky, in NLTE : J = rB(ν, T ) r COMPLICATED

• Cloudy Sky, in LTE :

µ dI(ν)
kedz = −I(ν) + B(ν, T )(1 − ω0)+

ω0
2

∫ +1
−1 I(ν, ke, µ′)P(µ, µ′)d(µ′) + ω0

4π πIsunP(µ, −µsun)e−kez/µsun

• ω0 = ks/ke = 1 − ka/ke is the single scattering albedo (0 for no scatter)

• P(µ, µ′) is probability of scattering from µ′ into µ

• P(µ, −µsun) is probability of scattering from µsun into µ
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Solution of Radiative Transfer Equation I : Clear Sky

• For Clear Sky, one layer only, the equation to be solved is

µ
dI(ν, θ)

kedz
= −I(ν, θ) + B(ν)

• the solution is

I(ν, τe) = I(ν, 0)e−se/µ + B(ν, T )(1 − e−se/µ)

• I(ν, 0) is the incident radiation at bottom of layer

• B(ν, T ) is the Planck radiance for the layer, at temperature T

• se is the total optical depth of the layer = keZ

• lim τe � 1 means I(ν, τe) → I(ν, 0) Surface Temperature

• lim τe � 1 means I(ν, τe) → B(ν, T ) Layer Temperature
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Solution of Radiative transfer Equation I : Clear Sky (contd)

• For Clear Sky, one layer only

I(ν, τe) = I(ν, 0)e−se/µ + B(ν, T )(1 − e−se/µ)

• Can iterate this for many layers (build up atmosphere)

I(ν) = εsB(ν, Ts)τs→∞(ν, θ)+
∑i=N

i=1 B(ν, Ti)(τi+1→∞(ν, θ) − τi→∞(ν, θ))+
Iref l.thermal + Isolarbeam

• εs , Ts are the surface terms

• Ti are the i = 1, N layer temperatures

• Solution is in many codes, such as KCARTA

• Quite fast code!!!!

• Accuracy tested by instrument campaigns (CAMEX, WINTEX) and AIRS
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LBL Models and Instrument Retrievals

• kCARTA takes about 6 minutes to run for ONE radiance set

• Other LBL codes take about 1 hour to run

• New instruments eg AIRS have 2378 channels, 90 observations in 3 sec

• To do retrievals, we need a code that takes about 1 sec to run

• Instruments see the convolved monochromatic radiances
Ij(instr) =

∫
SRFj(ν)I(ν)dν
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Fast Models - high resolution instruments eg AIRS

AIRS is a high resolution instrument with narrow spectral channels.
The upwelling monochromatic radiance (here τ is layer-space transmittance)

I(ν) = εsB(ν, Ts)τS +
i=N∑
i=1

B(ν, Ti)(τi+1 − τi)

needs to be convolved over the spectral channels.

Ij =
∫

dνSRF(ν)εsB(ν, Ts)τS+
∑i=N

i=1

∫
dνSRF(ν)B(ν, Ti)(τi+1 − τi)

Planck term and emissivity do not vary appreciably over the channel width and
so can be taken out of the integral!

Ij = εsB(ν, Ts)
∫

dνSRF(ν)τS+
∑i=N

i=1 B(ν, Ti)
∫

dνSRF(ν)(τi+1 − τi)
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Ij = εsB(ν, Ts)TS +
i=N∑
i=1

B(ν, Ti)(Ti+1 − Ti)

SARTA replaces convolved monochromatic radiances with radiances generated
from convolved transmittances

Ti =
∫

dνSRF(ν)τi(ν)
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Fast Models - low resolution instruments eg MODIS

MODIS has wider spectral channels.
The upwelling monochromatic radiance (here τ is layer-space transmittance)

I(ν) = εsB(ν, Ts)τS +
i=N∑
i=1

B(ν, Ti)(τi+1 − τi)

needs to be convolved over the spectral channels.

Ij =
∫

dνSRF(ν)εsB(ν, Ts)τS+
∑i=N

i=1

∫
dνSRF(ν)B(ν, Ti)(τi+1 − τi)

Planck term and emissivity vary appreciably over the channel width and so need
to be treated more carefully!

Looking at one of the terms in the summation,

Ii(modis) =
∫

SRF(ν)B(ν, Ti)(τi−1 − τi)dν

if we assume
Ii(modis) = (Ti+1 − Ti)B(νef f , Ti)
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we can find an effective planck frequency for each layer by solving for

B(νef f , Ti) = Ii(modis)
(Ti+1 − Ti)

SSM, UMBC 12
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Convolved transmittances

• Convolved transmittances modelled using a regression based approach

• Generate training set of convolved transmittances using (48) regression
profiles, using kCARTA

• Solve for the coefficients that relate [convolved layer transmittance] with
[profile based predictors], for each component gas and layer.

AX = B

where A = (m × n) predictor matrix, X = (n × 1) coefficients, B = (m × 1)
transmitance

SSM, UMBC 13



Oct 2005 NOAA Cross Training

Convolved transmittances (contd)

• Monochromatically, for g=1 to G gases the total transmittance is the
product of the individual transmittances τg1τg2τg3...τgG

• This is not true after convolution!
∫

dνSRF(ν)τg1(ν)τg2(ν) 6=
∫

dνSRF(ν)τg1(ν) ×
∫

dνSRF(ν)τg2(ν)

• But we can ratio convolved transmittances!!!! Let∫
dνSRF(ν)τg1(ν)τg2(ν) = T12 and

∫
dνSRF(ν)τg1(ν) = T1

then the effective transmittance of gas 2 is T2ef f = T12
T1

• “Break out” 5 gases (H2O,CO2,O3,CH4,CO), while other gases are kept
“fixed” or constant (transmittance depends only on layer temperature)

• The variable gases are treated differently eg CO2 does not vary a lot, while
water vapor varies by orders of magnitude.
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General Comments

• Our models use P/R linemixing for CO2 (temperature sounding)

• Can also tweak the water vapor continuum

• Scott looked at thousnds of clear sky spectra to put in overall tweaks

• They certainly do not make expt data agree “less” with LBL codes

• Hidden complexities such as : reflected thermal, modelling solar
contributions
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Scattering particles in Atmosphere : Refractive Index
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Scattering matter in atmosphere

Size considerations

• Typical infrared wavelengths λ : 3 - 15 um

• Typical dust particles < r >' 1-2 microns in radius

• Typical cirrus particles are larger (< r >' 10s of microns or more)

• If λ '< r > need to worry about scattering

• Mie scattering is easiest (spheres)

• Need to know <, = parts of the refractive index

Look for far field solution (d � r ), and obtain

• absorption optical depth τa

• scattering optical depth τs

• extinction optical depth τe = τa + τs

• phase function P(θ) (prob of scattering into angle θ)

• asymmetry factor g =
∫

P(θ)cosθdθ
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Scattering matter in atmosphere (contd)

• Standard codes exist for Mie scattering

• Average the above parameters over the distribution function

• Lognormal distributions, gamma distributions, realistic cirrus particle
distributions etc

• Codes for NONSPHERICAL particles are complex. Anthony Baran of
UKMO gave us parameters for ice aggregates, and hexagonal plates.
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Solution of Radiative transfer Equation II : Cloudy Sky

• For Cloudy Sky, solution is much more complicated!

• AIRS is infrared instrument (solar does not kick in till SW)

• In the thermal window region (800-1200 cm-1 or 8-12 microns), τs � τa can
use absorptive code!!!!!

• In the SW window region (2400-2700 cm-1 or 3 microns), Worry about
scattering, solar beam (τs ' τa)

• Solution by specialised codes, such as DISORT,RTSPEC

• Depending on complexity of solution, code can be quite slow!

• Concentrating on thermal IR, we wrote a kTWOSTREAM code which is
fast, and compares excellently against DISORT, RTSPEC

• Get reflection R, transmission T , layer emission E and solar beam B
coefficients for one layer; add together coeffs for many layers.
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kTwoStream code

• Integrodifferential equation

µ dI(ν)
kedz = −I(ν) + B(ν, T )(1 − ω0)+

ω0
2

∫ +1
−1 I(ν, ke, µ′)P(µ, µ′)d(µ′) + ω0

4π πIsunP(µ, −µsun)e−kez/µsun

• Find the solution at N quadrature points; DISORT uses arbitrary number of
streams; RTSPEC and TWOSTREAM use two (Gaussian) quadrature
points, at cos(θ±) = ±1/

√
3

• having solutions for the two stream angles, we can get the solution at
arbitrary angle, by integrating RTE

SSM, UMBC 20



Oct 2005 NOAA Cross Training

Cirrus Spectral Signature
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MODIS Image of Plume Mt Etna eruption
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Aerosol Plume
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SO2 Plume
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MODIS image for October 19, 2002 over E. Mediterranean

SSM, UMBC 25



Oct 2005 NOAA Cross Training

Using AIRS to detect dust : 960 - 1216 cm-1 BT diffs
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Optical Depth retrieval
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Solution of Radiative transfer Equation III : NLTE Sky

• Collisions tend to equilibriate temperatures

• Solar heating can preferentially pump some vibrational modes of certain
gases, raising their temperature

• At high altitudes, very few molecules, so fewer collisions

• This means that some gases can be in Non Local Thermodynamic
Equilibrium (NLTE) in the upper atmosphere

• The radiative transfer equation to be solved is now

µ
dI(ν, θ)
knltedz

= −I(ν, θ) + βB(T , ν)

• need to compute β, knlte
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Computing the optical depths

• Tl = local thermodynamic temperature of layer l,

• T g,l
vib(i) = NLTE vibrational temperature of the ith band, gas g at the same

layer l.

• Vibrational band center denoted by ν0

• kg,l(i, ν0) is the LTE absorption coefficient, qg,l is the gas amount in the
layer

at NLTE the optical depth is related to the LTE optical depth by

kg,l
nlte(i, ν0)qg,l = kg,l(i, ν0)αg,l(i, ν0)qg,l

• αg,l(i, ν0) is an adjustment factor

• As T g,l
vib(i) → Tl, α → 1
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Computing the Planck modifier

• Tl = local thermodynamic temperature of layer l,

• T g,l
vib(i) = NLTE vibrational temperature of the ith band, gas g at the same

layer l.

• Vibrational band center denoted by ν0

• kg,l(i, ν0) is the LTE absorption coefficient, qg,l is the gas amount in the
layer

at NLTE the Planck function is related to the LTE planck function by

BT ,T (g,l)
nlte = B(T )βg,l(i, ν0)

• βg,l(i, ν0) is an adjustment factor

• As T g,l
vib(i) → Tl, β → 1
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Effect on Non-LTE on Sounding Channels

NLTE affects some upper atmosphere AIRS channels that have been designated
for temperature sounding
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Bands used for NLTE model

• 10 strong bands (red) weighted towards 2380 cm−1 region

• 9 more strong bands (magenta) weighted towards 2200-2340 cm−1 region

• Weaker bands (blue) use LTE

SSM, UMBC 32



Oct 2005 NOAA Cross Training

NLTE temperatures for tropical profile (sun=0)

• Current SARTA LTE model based on kCARTA, upto 5e-3 mb

• Current SARTA NLTE model based on kCARTA, upto 3e-5 mb

• ECMWF profiles end at 0.1 mb
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Dependance on solar angle (TRP profile, Σ − Σ band)

• Current SARTA LTE model based on kCARTA, upto 5e-3 mb

• Current SARTA NLTE model based on kCARTA, upto 3e-5 mb

• ECMWF profiles end at 0.1 mb
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Dependance on climatology

• TRP, MLS, MLW, SAS, SAW used in plots

• Dashed lines are the kinetic (LTE) temperatures

• Solid lines are the NLTE temperatures for the Σ − Σ band
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CO2PPMV : Dependance on climatology

• TRP, MLS, MLW, SAS, SAW, STD used in plots

• STD “splits” the differences
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kCARTA 0-120 km results : bias and std

• Arbitrarily selecting day and night profiles from July 25, 2004

• Using orig 10 NLTE bands (large errors in 2200-2340 cm-1)

• About 750 profiles used (kCARTA takes LONG to run!!!)
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kCARTA 0-120 km results : bias and std

• Arbitrarily selecting day and night profiles from July 25, 2004

• Using the 19 NLTE bands (small errors in 2200-2340 cm-1)

• About 750 profiles used (kCARTA takes even LONGER to run!!!)
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NLTE in SARTA

• Upwelling LTE radiance Ij(lte) =
∫

SRFj(ν)Ilte(ν)dν

• Upwelling NLTE radiance Ij(nlte) =
∫

SRFj(ν)Inlte(ν)dν

• Already have SARTA for Ij(lte)

• Using kCARTA model δIj = Ij(nlte) − Ij(lte)

• Use the predictor-coeff idea : AX = δIj

• Predictors include (a) constant, (b) suncos, (c) suncos2,
(d) suncos ×T avtop5 (e) suncos at surface

SSM, UMBC 39
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SARTA 0-120 km results : R branchhead

• use the uniform clear profile set (34000 day, 10500 night)

• NLTE biases using OPTIMUM profiles above 0.1 mb

SSM, UMBC 40
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SARTA 0-120 km results : R branchhead

• use the uniform clear profile set (34000 day, 10500 night)

• NLTE stddev using OPTIMUM profiles above 0.1 mb

SSM, UMBC 41
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SARTA 0-120 km results : solzen dependance

• (a) (b) refer to 2380,2385 cm−1; blue = LTE model, red = NLTE model

• use the uniform clear profile set (34000 day, 10500 night)

• NLTE biases using OPTIMUM profiles above 0.1 mb

SSM, UMBC 42
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kTwoStream code (contd)

µ+
dI+

dτ = −I+ + ω0
2 (I+(1 + 3gµ+µ+) + I−(1 − 3gµ+µ+))+

Bb(1 − ω0)eβτ + ω0
4 ST e−(T −τ)/µsun)P(µ+, −µsun)

−µ+
dI−

dτ = −I− + ω0
2 (I+(1 − 3gµ+µ+) + I−(1 + 3gµ+µ+))+

Bb(1 − ω0)eβτ + ω0
4 ST e−(T −τ)/µsunP(−µ+, −µsun)
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where we define

µ+ upgoing stream angle = +1/sqrt(3)

µ− downgoing stream angle = −µ+

I+ upgoing stream intensity

I− downgoing stream intensity

τ optical depth

T layer total optical depth (0 at bottom, T at top)

ω0 layer single scattering albedo

g layer asymmetry factor

Bb radiance at bottom of layer

ST solar radiance at top of layer


 I+

I−


 =


 R T ∗

T R∗





 I−

t

I+
b


 +


 Eup

Edown


 +


 Fup

Fdown



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where
I+ upgoing stream intensity at top of layer

I− downgoing stream intensity at bot of layer

k± ±1/µ+
√

(1 − ω0)(1 − ω0g)

b 1−g
2

α ω0(1 − b) − 1

a± −(k± + α/µ+)µ+/(ω0b)

∆0 −α2 + (ω0b)2

R (ek−T − ek+T )/∆0

T (a+ − a−)/∆0

R∗ R

T ∗ T

Eup 1 − T ∗

Edown −R

Fup −R

Fdown 1 − T ∗
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General solution (for µ ≥ 0)

µ dI
dk = −I + J′(k, I+(k), I−(k))

where J′(k, I+(k), I−(k)) is the (Eddington’s second solution) source function

J′(k, I+(k), I−(k)) = ω0
2

(
(I+ + I−) + 3gµµ+(I+ − I−)

)

Bb(1 − ω0)eβk + ω0
4 ST e−(T −k)/µsun)P(µ, −µsun)

Since we already know the solutions to the twostream radiances I+, I−, this
general equation can be exactly solved as well. The solution can be written as

I(k, µ) =
(

I(0, µ) + Sup(k)
)

e−k/µ
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Two temperatures!!!

• Sun at 6000K visible wavelengths 400 - 800 nm (0.5 um)

• Earth at 300K infrared wavelengths 3 - 15 um

• l(um) = 10000/ν(cm−1)

• Assume radiance = Planck black body = B(ν, T )

B(ν, T ) = 2hc2ν3

exp(hcν/KBT ) − 1

Units : mWcm−2sr −1/cm−1

• Radiance Units ↔ Temperature
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